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Nonlinear dynamics of forced transitional jets : 
periodic and chaotic attractors 
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Conclusive experimental evidence is presented for the existence of a low-dimensional 
temporal dynamical system in an open flow, namely the near field of an axisymmetric, 
subsonic free jet. An initially laminar jet (4 cm air jet in the Reynolds number range 
1.1 x lo4 < Re, < 9.1 x lo4) with a top-hat profile was studied using single-frequency, 
longitudinal, bulk excitation. Two non-dimensional control parameters - forcing 
frequency St, (=f,,D/V,, where f,, is the excitation frequency, D is the jet exit 
diameter and V, is the exit velocity) and forcing amplitude at (= u i /Q ,  where u; is the 
jet exit r.m.s. longitudinal velocity fluctuation at the excitation frequency) - were 
varied over the ranges < af < 0.3 and 0.3 < St, < 3.0 in order to construct a 
phase diagram. Periodic and chaotic states were found over large domains of the 
parameter space. The periodic attractors correspond to stable pairing (SP) and stable 
double pairing (SDP) of rolled-up vortices. One chaotic attractor, near SP in the 
parameter space, results from nearly periodic modulations of pairing (NPMP) of 
vortices. At large scales (i.e. approximately the size of the attractor) in phase space, 
NPMP exhibits approximately quasi-periodic behaviour, including modulation 
sidebands around $fez in u-spectra, large closed loops in its Poincark sections, 
correlation dimension v = 2 and largest Lyapunov exponent A, = 0. But investigations 
at smaller scales (i.e. distances greater than, but of the order of, trajectory separation) 
in phase space reveal chaos, as shown by v > 2 and A, > 0. The other chaotic attractor, 
near SDP, results from nearly periodic modulations of the first vortex pairing but 
chaotic modulations of the second pairing and has a broadband spectrum, a dimension 
2.5 < v < 3 and the largest Lyapunov exponent 0.2 < A, < 0.7 bits per orbit (depending 
on measurement locations in physical and parameter spaces). 

A definition that distinguishes between physically and dynamically open flows is 
proposed and justified by our experimental results. The most important conclusion of 
this study is that a physically open flow, even one that is apparently dynamically open 
due to convective instability, can exhibit dynamically closed behaviour as a result of 
feedback. A conceptual model for transitional jets is proposed based on two- 
dimensional instabilities, subharmonic resonance and feedback from downstream 
vortical structures to the nozzle lip. Feedback was quantified and shown to affect the 
exit fundamental-subharmonic phase difference q5 - a crucial variable in subharmonic 
resonance and, hence, vortex pairing. The effect of feedback, the sensitivity of pairings 
to 4, the phase diagram, and the documented periodic and chaotic attractors 
demonstrate the validity of the proposed conceptual model. 

1. Introduction 
In recent years, the concept of coherent structures (Kline e l  al. 1967; Crow & 

Champagne 1971; Brown & Roshko 1974; Lumley 1981; Fiedler 1988) and the 
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development of dynamical systems theory have led to the hope that low-dimensional, 
deterministic dynamics may underlie the seemingly random motion in turbulence. 
Possible connections between dynamical systems and turbulence have been the subject 
of several review articles (e.g. Lanford 1982; Guckenheimer 1986; Ruelle 1991), which 
conclude that a dynamical systems treatment of turbulence is possible, in principle. 
Keefe (1987) suggested that coherent structure eduction methods implicitly assume the 
existence of an attractor on which conditional averages are performed (not inconsistent 
with the suggestions of Hussain 1986 and Bridges 1990). 

The question as to whether open flows - the overwhelming majority of flows in 
nature and technology - can behave as dynamical systems has been seriously debated 
in the past decade. The objective of this study is to demonstrate the existence of a 
dynamical system in an open flow and, thereby, to lay a foundation for future 
connections between the motions on a strange attractor and vortex formation and 
interactions in physical space. Circular jets were chosen for several reasons in addition 
to their simple geometry, construction and wide availability as a laboratory facility : 
(i) a sequence of axisymmetric (i.e. two-dimensional) instabilities can occur before 
transition to turbulence, suggesting that low-order nonlinearities may exist; 
(ii) periodic and non-periodic states have been observed when the flow is periodically 
forced, suggesting possible transitions to chaos; and (iii) the coherent structures have 
been well studied previously (e.g. Crow & Champagne 1971 ; Hussain & Zaman 1980, 
1981). In this study, we emphasize the important differences between (a) open and 
closed flows and (b) physically and dynamically open flows ; moreover, we observe that 
a physically open flow can behave like a closed flow. The roles of local and global 
instabilities and feedback in closing an open flow are recognized and used to construct 
a conceptual model ofjet transition dynamics. Based on this model, a control parameter 
space is chosen and explored in detail experimentally. The attractors found are 
investigated using dynamical systems techniques. Our experimental results largely 
support the conceptual model. Before presenting these results, we briefly review the 
applications of dynamical systems to fluid flows. 

1.1. Studies o f f o w  systems using dynamical systems techniques 
Confined flows such as Taylor-Couette flow and Rayleigh-Benard convection have 
been studied in experiments successfully (e.g. Brandstater & Swinney 1987 ; Libchaber 
& Maurer 1980; BCrge et a/. 1980) using dynamical systems techniques. Such studies 
have the advantage that these flows are absolutely unstable or globally unstable, and 
the boundaries allow only certain discrete sets of eigenfunctions to be selected by the 
systems at low Reynolds/Rayleigh numbers. Studies of open flows may have neither 
of these advantages and typically have the disadvantage that the flows are spatially 
developing; thus, applied to open flows, dynamical systems techniques have produced 
more limited results. A number of researchers have studied physically open transitional 
flows using dynamical systems techniques to calculate invariants such as correlation 
dimension v, largest Lyapunov exponent A, and Kolmogorov entropy. Sreenivasan 
(1985) believed that he found a quasi-periodic route to chaos in cylinder wakes for 
30 d Re, d lo4 (a flow that is absolutely unstable in the near field but convectively 
unstable in the far field). This result was later contested by Van Atta & Gharib 
(1987), who found only single-frequency Strouhal vortex shedding in the range 
40 d Re, < 160 unless the cylinder was also vibrating; they concluded that 
Sreenivasan’s ordered and chaotic regimes were due to aeroelastic coupling of the 
wake with cylinder vibration modes (not considered by Sreenivasan). Yokuda & 
Ramaprian’s (1990) experiments in the cylinder wake for lo4 d Re, < lo5 yielded 
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positive A, and v x 10-12 (although to estimate such high dimensions with their short 
time series data is questionable; see Ruelle 1990). 

Airfoil wakes were studied experimentally by William-Stuber & Gharib (1990), who 
found that chaotic behaviour could be achieved via a quasi-periodic route if the flow 
were forced at two frequencies in addition to the natural shedding frequency. In two- 
dimensional simulations of airfoil wakes, Rohling et al. (1 990) found a small window 
of chaos using angle of attack as a bifurcation parameter, while Vastano & Pulliam 
(1989) observed period-doubling using a fixed angle and varying speed. Jenkinson & 
Hussain (1987) found steady and periodic behaviour, but not chaos, in transitional 
pipe flow using pressure drop as the control parameter. Aronson, Gaponov-Grekhov 
& Rabinovich (1988) calculated dimension in an excited flat-plate boundary layer, 
finding v z 4 and ascribing this dimension to the presence of four (ribbon forcing, 
‘parasitic’, ribbon-flow and plate oscillation) frequencies, only one of which was 
clearly not due to facility vibration or electronic noise. Beyond a certain distance 
downstream, v grew linearly with distance; they associated this with the onset of three- 
dimensionality. In a recirculating jet, they measured 2.5 < v < 3 in an open test section 
between the jet exit and blower intake. The effects of this odd kind of feedback on the 
dynamics were alluded to but not discussed ; perturbations might have propagated 
through the return channel or fed back from impingement on the intake. Sreenivasan 
(1986) found v x 6.3 and A, z 0.95 bits/orbit for an unexcited jet and v x 3.2 for an 
excited jet (but reported no A,); no explanation of the flow physics was offered for 
either case. For an axisymmetrically excited jet with an exit Poiseuille profile at 
Re, = 543, Bonetti & Boon (1989) found that dimension increased continuously from 
v z 3 to v z 6 over the axial range of 18-24 diameters. They found a power-law 
dependence between spatial coherence and attractor dimension and attributed the low 
dimension to the persistence of the helical modes. Aubry et al. (1988) derived a system 
of ordinary differential equations for a boundary layer (using proper orthogonal and 
Fourier modes and Galerkin projection) and analysed invariant subspaces of their 
dynamical system for regular and chaotic behaviour. Though studying a physically 
open flow, they used periodic boundary conditions in the streamwise direction, in effect 
closing the flow dynamics. 

1.2. Organization of the paper 
This paper is organized as follows. In $2, we define open flows, review relevant 
concepts in stability and feedback, and explain our conceptual model of the jet 
transition region as a dynamical system. The phase diagram of the jet, measured in the 
parameter space of forcing frequency St ,  and forcing amplitude a f ,  is presented and 
discussed in $3. In $94 and 5, we investigate two periodic attractors and two chaotic 
attractors using tools of nonlinear dynamics. Section 6 discusses other states which 
were recognized but not definitively shown to be low-dimensional or deterministic. In 
$7, we conclude with some remarks about our results and the applicability of these 
techniques to open flows in general. 

2. Conceptual model of the dynamical system 
2.1. Physically and dynamically open systems 

A de$nition of openflows The traditional definition of an open flow is one in which 
fluid does not remain within the domain of interest but crosses its boundaries. 
Examples include most technological flows such as jets, mixing layers, boundary layers 
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and pipe flows. The definition that we propose instead is that an openpow is one in 
which external perturbations cross the boundaries and dominate the dynamics. (This 
definition is not inconsistent with the ideas of Morkovin 1988 and Huerre & 
Monkewitz 1990.) We refer to the traditional definition as ‘physically open’ and to our 
definition as ‘dynamically open’. 

Since external disturbances may significantly influence, but not necessarily dominate, 
flow dynamics, being ‘open’ or ‘closed’ is clearly a matter of degree. In principle, any 
combination of ‘open’ and ‘closed’ is possible. For example, Biringen & Peltier (1990) 
simulated three-dimensional Rayleigh-Benard convection (physically closed) with 
sinusoidal and random gravity modulations and found changes in both the stability 
and dynamics of the flow (partially dynamically open). On the other hand, the 
edgetone generated when (physically open) free shear flows impinge on a wedge can 
cause phenomena such as single-frequency vortex generation and sound production, 
the frequency locking being caused by feedback (dynamical closure) from the wedge to 
the separation point (establishing a global mode; e.g. see Chomaz, Huerre & Redekopp 
1988). 

The open flow problem Dynamically open flows might not be describable as 
deterministic dynamical systems because it may not be possible to incorporate the 
influence of external perturbations in other than a statistical sense. This may seem to 
contradict the fact that one can formulate Navier-Stokes problems with appropriate 
initial and boundary conditions. However, in a practical flow, the specified boundary 
conditions can never be met owing to the presence of external noise. The influence of 
noise is only a minor problem in dynamically closed flows, because the internal 
dynamics dominate and the external noise serves to randomize the dynamics only at 
the smallest scales in phase space (e.g. to spread trajectories slightly on a limit cycle). 
In dynamically open flows, however, noise dominates the evolution of the system (e.g. 
see Deissler 1989), which can hence be described as ‘noise-driven’. Therefore, the ‘open 
Jow problem’ is the inability to predict the dynamics of open j o w s .  This is obviously a 
very serious constraint on our ability to predict and control turbulence. 

Whether a flow is open or closed depends strongly on the instability type (i.e. 
absolute or convective), a major component of the dynamical system. This is discussed 
more fully below. 

2.2. Absolute and convective instabilities and global modes 
This discussion of instability is limited to spatially developing, physically open flows. 
Local flow instabilities (i.e. due to the velocity profile) can be classified as either 
absolute or convective. In an absolutely unstable (AU) flow, disturbances spread 
upstream and downstream and influence the entire flow, and, moreover, are continually 
felt at their points of origin. In a convectively unstable (CU) flow, disturbances are 
advected away from the source; i.e. all unstable wavenumbers have non-zero group 
velocity. Free shear flows may fall into either category, but are generally CU (see 
Huerre & Monkewitz 1990). 

These spatially local stability concepts do not preclude the existence of global modes 
(resulting from an instability of the entire flow domain of interest). (However, even 
flows with global modes may depend on local instabilities, e.g. Kelvin-Helmholtz 
instability in a shear layer tone.) By global modes, we mean oscillations that are 
self-sustained (via feedback, if locally CU) and occupy an extended spatial domain, i.e. 
h / L  4 1 where h is disturbance wavelength and L is domain size. (As an example, 
for a jet disturbance travelling at half the jet speed, h / D  = (2 St,)-‘; if St, = 1 and 
L = 5 D, h / L  = 0.1 .) Huerre & Monkewitz discuss global instabilities extensively with 
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an emphasis on flows with regions of absolute instabilities (e.g. near wakes and heated 
jets) which drive downstream convective instabilities; they describe the preferred mode 
of cold jets as a slightly damped global mode maintained by low-level forcing. It is not 
clear that such forcing is required, since the preferred mode has been (and, indeed, is 
typically) observed without controlled forcing. In this paper, we emphasize global 
modes arising fromfeedback (in CU flows with no known AU regions), specifically 
from the open domain (rather than from impingement as discussed by Chomaz et al. 
1988). 

Spatially developing free shear flows have points of receptivity, such as a jet nozzle 
lip or the trailing edge of a mixing-layer splitter plate, which act as the origin from which 
disturbances grow. The fact that the disturbances advect away in a CU flow leaves this 
origin open to respond to new disturbances which may originate external to the flow 
domain (i.e. sources not due to flow, such as facility noise and ambient acoustic 
perturbations); a growing disturbance does not remain spatially fixed to dominate 
dynamics at its inception point as it does in an AU flow. 

The differences between absolute and convective instabilities have important 
implications for flow dynamics, perhaps first recognized by Deissler (1985) and Huerre 
& Monkewitz (1985). In the absence of external disturbances (except some initial 
perturbation to trigger the instabilities), an AU flow will behave asymptotically 
according to its own internal dynamics, reaching some saturated nonlinear state, e.g. 
convection rolls in Rayleigh-BCnard convection or vortices shed from a cylinder in 
cross-flow at low Re,,. In contrast, a pure CU flow has asymptotically only a trivial 
steady state, since all disturbances will eventually advect out of any finite domain. (By 
‘pure’ C U  flow, we mean one in which feedback, and hence global modes, are absent.) 
Pure CU flows can have non-trivial dynamics only if there is continuous input of 
external disturbances ; phenomena seen at any point in space are upstream (usually 
free-stream) perturbations transformed into waves, vortices, etc., through what is now 
called ‘receptivity’. Although these phenomena are typical events in the system, their 
occurrence cannot be predicted in time because the perturbations that trigger them are 
random. On the other hand, periodic forcing can be used to regularize these phenomena 
and could easily be incorporated into a mathematical model analytically as a time- 
dependent (but deterministic) inflow boundary condition. This is not true of stochastic 
forcing, unless its time history (and not only its statistics) could be precisely specified. 
Regardless of the nature of the external perturbation, however, pure C U  flows clearly 
are dynamically open. 

One may argue that global solutions must occur, even in CU flows, owing to the 
elliptic nature of pressure in Navier-Stokes flows, but this is not necessarily true. While 
fluctuations within the domain must be felt at the boundaries due to ellipticity, these 
fluctuations must compete with external perturbations (i.e. noise) at the point of 
receptivity. Noise may dominate effects from elsewhere in the domain (again, a result 
of the flow being open). 

Dynamical systems models of CU flows (e.g. Aubry et al. 1988, boundary layers; 
Glauser, Zheng & Doering 1991, jets) have been developed and analysed, showing such 
results (from Aubry et al.) as periodic behaviour, heteroclinic chaos and sensitivity to 
external perturbations. However, these models were developed using periodic boundary 
conditions in the streamwise direction, thus enforcing an artificial dynamical closure : 
all perturbations advecting out through the downstream boundary re-enter the domain 
through the inflow boundary. This is mathematically convenient but may not model 
the actual dynamics of these convectively unstable, spatially developing flows. In the 
actual flows, feedback may close the dynamics, but (i) the presence of feedback was not 
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established in these studies and (ii) its effects are unlikely to be correctly modelled by 
periodic boundary conditions. 

2.3. Feedback and dynamical closure 
The way in which locally CU flows can be dynamically closed is by feedback, either 
from solid boundaries or from flow events within the domain. Feedback has two 
important consequences. First, the system can govern its own dynamics by driving 
itself with perturbations from downstream, even though the flow is locally CU. Second 
(as a result), global modes can occur, implying that the motion is correlated in an entire 
region. Thus, while the spatial structure is important, the dynamics of the global mode 
may be describable by measurements at a limited number of positions. Dynamical 
closure implies that theJow may act as a temporal, perhaps low-dimensional, dynamical 
system. Closure is obviously crucial if dynamical systems approaches are to describe 
and model CU flows. 

Feedback can have a variety of sources. Huerre & Monkewitz (1990) point out that 
global instability can arise from upstream-propagating vorticity waves and from 
irrotational pressure feedback; whereas the former case is not likely in CU flows, the 
latter is. The pressure feedback is governed in the incompressible, inviscid limit by a 
Poisson equation V2p  = - p  ai aj(uj ui). This equation can be transformed into 
V’p = p ( & ~ ~ - s : s ) ,  linking pressure directly to vorticity and strain rate tensor s; 
changes in vorticity must be accompanied by changes in the pressure field - the basis 
of vortex sound theory. They further state that the potentially most powerful sources 
are found when the flow encounters boundaries (of or within the flow domain), 
although “‘volume sources” such as “vortex pairing”. . . may also be significant’. The 
role of solid boundaries is seen in many examples, such as edgetones, whistler nozzles, 
impinging jets and flow over open cavities. Even artificial boundaries such as those 
necessarily imposed in numerical simulations that use inflow-outflow boundary 
conditions can unintentionally result in global modes (Buell & Huerre 1988). If 
downstream boundaries and flow obstacles are not significant, volume sources may be 
important, however. Dimotakis & Brown (1976) measured very long autocorrelation 
times in a two-stream mixing layer and hypothesized that there was coupling (via 
vortex-induced motion) between the trailing edge of the splitter plate and structures 
exiting the test section, which kept the newly forming structures in phase with the 
exiting ones. Laufer & Monkewitz (1980) used a feedback model of vortex pairing to 
explain the pairing locations found experimentally by Kibens (1980) in an excited jet. 
Based on phase locking, the subharmonic period must equal the advection time from 
the lip to the pairing location plus the acoustic feedback time with feedback being 
generated by vortex pairing (‘ volume source’). 

2.4. Evidence of feedback 
While Dimotakis & Brown (1976) and Buell & Huerre (1988) observed the effects of 
feedback in mixing layers, Grinstein, Oran & Boris (1990) provided more direct 
evidence by simulating the initial rollups of a compressible plane mixing layer in a large 
domain. They stopped the simulation well before the startup vortex reached the 
outflow so that only feedback from events within the flow domain, and not from 
numerical outflow boundary conditions, would be felt. They found that pressure 
waves, generated at rollup, propagate upstream to trigger subsequent instability waves, 
and they suggested that the difference between propagation speeds in the two streams 
creates a phase difference across the layer which provides a transverse velocity 
perturbation when the pressure wave reaches the inflow. This provides a direct link 
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between feedback and unsteady vorticity in the shear layer. Note that this feedback is 
due to rollup rather than pairing. 

Numerical results in our laboratory also point to the role of in-domain feedback. 
Simulations of an incompressible, two-dimensional, viscous mixing layer with a splitter 
plate (Virk 1989) showed St,, M 0.012, implying a role for feedback similar to that of 
Hussain et al. (1986). Virk used a finite-element scheme with outflow boundary 
conditions c?w/an = 0, but a convective outflow condition (as/c?t + c aw/ax = 0)  also 
showed similar results. Two different domain sizes were used with no apparent 
differences in St,,. Vortex filament simulations of interacting vortex rings by Bridges 
(1990) show that the peak amplitude of the sound generated occurs when the rings are 
coplanar, as occurs only at a particular phase of vortex pairing. The generated sound 
is a mechanism by which perturbations could be transmitted to the lip. 

Experimental evidence also supports the presence of feedback. Hussain et al. (1986; 
based on measurements by Hussain & Zaman 1978) found that when the circulation 
(estimated from the saturation amplitude) is divided by the distance from the splitter 
plate to the saturation location (approximately the relative amplitude of the Biot- 
Savart vortex-induced motion), its maximum value occurs near St,, ( = f,, 19,/ U,, 0, 
being the momentum thickness at the lip) M 0.012, which is the observed ‘natural’ 
frequency in many mixing-layer experiments but not for the fastest growing mode 
(St,, M 0.017). This suggests that the system is dominated by the frequency that 
provides the most self-excitation rather than the one with the largest growth rate. From 
the present experiments, figure 1 (a)  shows the jet-exit centreline fundamental- 
subharmonic phase difference as a function of forcing-signal phase difference 
q5,, in cases where periodic pairing (and double pairing) does (St, = 1.17) or does not 
(S t ,  = 3.33) occur. (Two-frequency forcing, f and was employed with controlled 

phase difference calculations are described in the Appendix, 5A.2.) When SP and 
SDP (and hence strong, periodic feedback) occur, the superposition of forcing and 
feedback should create a nonlinear relationship between (since feedback is 
stronger at those phase differences for which pairing is closer to the jet exit, which is 
the case for SP and SDP). When stable pairings do not occur, pairing feedback should 
be weaker and the - relationship should be linear. This is clearly the case in 
figure 1 (a). Second, this feedback should be evident in exit velocity fluctuations. Exit- 
centreline spectra using single-frequency excitation (Az = 264 Hz) are shown for the 
‘fundamental only’ state (i.e. excited near the preferred mode frequency and exhibiting 
no pairings; figure 1 b) and stable double pairing (figure 1 c). In the first case, there is 
clearly no subharmonic content in the exit spectrum, while in the second case sharp 
peaks are seen at ;Az and +Ax (132 and 66 Hz respectively) reflecting periodic feedback. 

2.5. Subharmonic resonance 
Primary instability The primary instability in free shear layers and jets is the (two- 
dimensional) Kelvin-Helmholtz instability. For linear instability theory, see Michalke 
(1965) for spatially developing mixing layers and Michalke (1971) for circular jets with 
different ratios of jet radius to momentum thickness. The physical result of a saturating 
Kelvin-Helmholtz wave is the ‘rollup’ of the wave into a vortex. These vortices and 
those formed by their interactions in transitional flows are equivalent to coherent 
structures in turbulent flows. 

Subsequent to the formation of Kelvin-Helmholtz vortices, there are two well- 
known subharmonic instabilities in free shear flows : ‘pairing’ and ‘ tearing’ or 
‘shredding’ (e.g. see Kelly 1967; Patnaik, Sherman & Corcos 1976; Pierrehumbert & 
Widnalll981; Corcos & Sherman 1984; Monkewitz 1988). Pairing is the interaction of 
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FIGURE 1. (a) Influence of forcing phase difference between fundamental and subharmonic on jet 
exit phase difference $,,, at two fundamental St,  values. (b) Jet exit power spectrum of u for 
fundamental only at St,  N 0.40, uf z 1.00%, Re,, z 6.9 x lo4, x / D  = 0. ( c )  Jet exit power spectrum 
of u for stable double pairing at St ,  N 1.19, af N 2.4%, Re, N 2.3 x lo4, x / D  = 0. 
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two vortices in which they revolve around each other, eventually merging through the 
action of viscosity to form a single core. Tearing occurs when a vortex is caught in the 
opposing induced fields of two stronger (nearly equal) vortices which shear it into two 
segments, each merging with the nearby vortex. Both interactions need only be two- 
dimensional. Since pairing provides feedback to close the jet dynamics, some relevant 
results are summarized below. 

Subharmonic instability was studied using nonlinear temporal theory for a periodic 
base flow by Kelly (1967), who found that there are four main requirements for 
subharmonic (s) resonance: (i) a 2: 1 wavenumber ratio, (ii) a threshold amplitude 
( z  12 % of the velocity difference) of the fundamental cf) wave in order for the s growth 
rate to exceed that of the most unstable disturbance of the mean flow, (iii) equal phase 
speeds and (iv)fnear neutral (i.e. near saturation). While the phase speed requirement 
is met in the temporal theory automatically (all phase speeds are equal), phase speeds 
and wavenumber ratio cannot both meet the resonance condition in the linear spatial 
theory (Monkewitz 1988). Monkewitz found a critical fundamental amplitude for the 
nonlinear, spatially developing case, about which the initial gap between f and s phase 
speeds was closed asymptotically (by slowing or accelerating the s-wave via nonlinear 
interaction), and resonance occurred. He further found that the initial resonant growth 
rate of s depends on the cosine of the phase angle q5 between the two waves. During 
the time interval in which the phase speeds become matched, phase continually shifts, 
so that even when s is initially damped, q5 will shift to an amplified value except for a 
critical angle = 0.064~.  The length of this interval, hence the location of the onset 
of resonance, varies with 4. Thus, s-amplitude measured at a location between thefand 
s saturation locations should be periodic in q5 with a cusp-like attenuation at q5c. 

Mixing-layer experiments on subharmonic resonance were performed by Husain & 
Hussain (1986, 1989) using two-frequency (fundamental f and subharmonic i f )  
excitation with controlled amplitudes and (the phase difference betweenfand i f  at 
the lip). They documented a strong effect of on the s growth rate and a cusp-like 
amplitude response; they also studied the effects of detuning (the interaction of waves 
at two frequencies f and i f &  An, which provides a periodic amplitude modulation of 
s. In addition to the dependence, jet experiments in our laboratory by T. Liu (private 
communication, 199 1) using two-frequency ( f ,  i f )  excitation showed significant effects 
of forcing amplitudes, including hysteresis in the s growth rate as a function of q5. 

An analysis off-s interactions in turbulent, round jets was done by Mankbadi (1985) 
using energy methods. He derived a set of nonlinear ordinary differential equations for 
component evolutions. He confirmed the dependence of the s growth rate on the 
fundamental frequency f and found that the number of amplified subharmonics (i.e. 
if, $ ...) depends on St,; e.g. three pairings will occur at St,  = 2.4, producing 
subharmonics at St, = 1.2, 0.6 and 0.3. 

2.6. Jet breakdown 
At some stage of jet transition, three-dimensional instabilities will become important, 
resulting in the formation of streamwise vortical structures (so-called ' ribs ') between 
spanwise vortices. These distort the rings and cause local vortex interactions which lead 
to the breakdown of the two-dimensional structures. Such interactions may not 
provide organized feedback at sufficient amplitudes to cause low-dimensional 
deterministic dynamics. (Although induced perturbations at the jet exit from three- 
dimensional compact events can be viewed as nearly two-dimensional when the events 
are far downstream, the induced motions would be weaker.) Since our model for 
dynamical closure requires strong feedback (i.e. greater than the noise level), it is not 
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FIGURE 2. Conceptual dynamical system of transitional jets. 

likely that our dynamical system would persist beyond the near-exit, two-dimensional 
region. 

2.7. Conceptual model for  transitionul jet dynamics 
The theoretical, numerical and experimental evidence of subharmonic resonance and 
feedback have led us to hypothesize the system shown in figure 2. From initial 
perturbations, the fundamental ( f )  and subharmonic (s) grow independently at 
exponential rates determined by their frequencies, according to linear theory. After f 
reaches a critical amplitude, f and s resonate, modifying the growth rate of s. As s 
saturates, its feedback amplitude at the lip reaches a maximum, initiating the next s 
wave. For the second subharmonic, a second stage of resonance and feedback would 
be added. 

Dynamical variables The key dynamical variables are the fundamental amplitude af, 
subharmonic amplitude a, and the f-s phase difference 4. In the case of two successive 
subharmonic interactions, the quarterharmonic (4) amplitude and the s-g phase 
difference would also be important. In our experiments, we control St, and initial 
fundamental amplitude uf at the jet exit, allowing a, and 4 to evolve naturally. Since 
it seems that the crucial nonlinearity comes from subharmonic resonance in which the 
growth of s depends on cos 4, it is important to understand how feedback controls 4. 
If the time 7 f b  from initiation of s until its feedback reaches the lip is equal to the s 
period 7,, then 4 will be the same as before, sincefis periodically forced with a period 
7f = i7,. Since 4 is the same, the resonant s growth rate should be the same, as should 
the overall spatial evolution of s. This phase locking results in periodic flow, i.e. stable 
pairing. However, if 7rb =k 7s, 4 will be different from one period to the next, resulting 
in a growth rate, saturation location and subsequent feedback time different from 
the previous cycle. Therefore, 4 will wander, perhaps periodically or chaotically, as will 
the s-amplitude measured at a location downstream of the lip. 

The previous discussion explains the role of 4 only. In addition, the exit s-amplitude 
ase (due to feedback) also affects T ~ ~ ;  however, the saturation location (and hence time 
to saturation) varies only as -log use, so that this effect may not be as pronounced. If 
phase-locked, then it is likely that the feedback amplitude is also the same from one 
pairing to the next, thereby leading to the same ase each time. However, when not 
phase-locked, use will also vary from period to period, increasing the number of degrees 
of freedom. In the light of this, it is somewhat remarkable that SP and SDP exist with 
only fundamental excitation. 

Forcing The downstream events in transition are largely controlled by perturbations 
at the exit. Since the primary instability has a (continuous) broadband receptivity 
spectrum, forcing plays a key role in controlling the dynamical system. By periodically 
exciting at a particular unstable frequency, preference is given to that mode as well as 
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modes that resonate with it, and the degrees of freedom are reduced in effect to a small 
number. Furthermore, by choosing a value of St,, the frequencies offand s are fixed, 
dictating their (linear theory) growth rates and the saturation amplitude of J: Given 
these, the forcing amplitude ar controls the saturation location off (Freymuth 1966) 
and thus influences the saturation locations of the subharmonics. Thus a, and St, 
directly or indirectly control many features of the downstream evolution. 

Noise The effect of noise in this system is to compete with feedback and to disrupt 
the global mode dynamics. When af is high, noise is unlikely to affectfbut may affect 
s, whose amplitude at the jet exit is much lower (see figure 1 b) since its only source is 
feedback. At lower a,, noise may interfere with the evolution of bothfand s. In either 
case, noise can alter amplitudes and phase difference when superposed with forcing or 
feedback, or even excite a different unstable frequency, changing the dynamics of the 
system from self-driven to noise-driven. 

Summary The elements of linear stability, subharmonic resonance and feedback can 
be combined to explain how global modes can occur which permit the jet transition 
region to behave as a dynamical system. Convective instabilities render the system 
open, but feedback closes it. Feedback is shown to occur in numerical and experimental 
flows. The key dynamical variables are the amplitudes of the fundamental and 
subharmonic(s) and their phase difference(s). The role of forcing is to control the 
primary instability and hence to limit the number of degrees of freedom of the system, 
while noise can disrupt the dynamics of the global modes, leading to an open system. 

Having presented the essential elements of the conceptual dynamical system, the 
experimental results to verify it are presented: (i) the phase diagram (93), (ii) periodic 
attractors ($4), (iii) chaotic attractors (95), and (iv) other observed states ($6). 

3. Phase diagram 
3.1. Choice of parameters 

Since the Kelvin-Helmholtz instability is broadband, there are many possible choices 
for the control parameters (e.g. the frequencies and amplitudes of any number of pure 
tones, phase angles between harmonically related tones). In this work, however, we are 
interested in the dynamics of modes at undriven frequencies, specifically the 
subharmonics of the (fundamental) vortex rollup frequency ; hence we used a single- 
frequency excitation. 

The control parameters chosen are the non-dimensional forcing frequency St, and 
amplitude ur These two parameters are natural choices, especially if one thinks of the 
jet as a driven nonlinear oscillator, where frequency and amplitude are the standard 
control parameters. 

There is some question as to whether the appropriate lengthscale to non- 
dimensionalize frequency should be jet diameter D or exit momentum thickness 8,, 
since modes scaling on both of these occur in jets (Michalke 1971 ; Crow & Champagne 
1971; Zaman & Hussain 1980). Since the phenomena being studied involve the 
entire jet transition region, one would expect D to be the relevant lengthscale. For 
example, stable pairing has been seen in a number of jets at St, z 0.85 regardless of 
St,, (e.g. Zaman & Hussain 1980; Bridges 1990). The flow seems to be relatively 
independent of Re, (= U,D/v) ,  as long as an initially laminar, top-hat profile is 
maintained. 

Since environmental and facility noise is present in any experiment and is crucial in 
convectively unstable flows, its amplitude and frequency band should also be 
considered as parameters. In the experiments presented in this paper, every attempt has 
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been made to minimi;.c noise. using the lo\+-noise -jet facility in our anechoic chamber 
described in the Appendix, $ A .  1 .  The cffects of noise on the flov,, dynamics ha\se been 
studied and Lvill be presented i n  a later paper. 

3.2 .  I'titlis i l l  tlici p t i r u i i i ~ t ~ r  .spiic.r 
Any path to a given point in the parameter space will lead to the same state when 
multiple solutions arc absent. Typically. the path we used u ' a s  to fix Si,, and vary (1,. 

monotonically increasing it  in small increments ( 5  - 1  5 Yn 01' the previous level), then 
monotonically decreasing to check for hysteresis (i.e. multiple solutions). No 
investigation w a s  made of other paths. 

Sf, ,  can bc changcd by varying f ( , ) .  L' and D in any combination. Becausc of the 
discrete resonances of the settling chamber and the desire to explore moderate to high 
excitation amplitudes ( ( i t  < 20%). f ; , (  and D were fixcd ( f , ,  = 264 Hz and D = 4.0 cm) 
and C:, was varied to change ST/,. Independently. 11; u 'as  varied to change 11,. 

Having made parameter changes. settling times of only a few seconds were typically 
required. Near transition points. however, a s  much as several minutes were allowed. 
Near hysteresis jumps, up to 20 minutes (scveral hundred thousand periods of,f;,) were 
allowed. 

3.3 . Iliscrissioii of thr plicist. u'iugrmi 
Figure 3 ( [ I )  shows all measurement locations and states found in the parameter space 
over the ranges (0.3 6 S t ,  ,< 2.9,0.001 6 N /  6 0.3). (Nothing of interest was found for 
10Y 6 (I+ < lo-"; this region is not shown.) The states shown are found as a,  is 
increased; slight shifts occur due to  hysteresis as  l i t is decreased near ( S f I ,  = 1.2. 
N /  = 1 %). Nine states are denoted: ( i )  fundamental only (FO), (ii) stable pairing (SP), 
(iii) nearly periodic modulations of pairing (NPMP), (iv) stable pairing with modulated 
quarter-harmonic (SPMQ), (v) stable double pairing (SDP), (vi) quarter-harmonic 
chaos (QCA), (vii) inodulated subharmonic (MOD S), (viii) modulated subharmonic 
and quarter-harmonic (MOD SQ). and (ix) interinittency (INT). None of the periodic or  
chaotic states were found for St,, 3 1.7 or  ai < 0.001, and these regions were excluded 
from detailed investigation. Regions where each state exists are pattern-coded and 
displayed in figure 3 ( h )  for (0.5 < St, < 1.5, 0.001 < N,  < 0.3); its dominant features 
are the regions where the periodic attractors are found, labelled SP and SDP. Chaos 
(QCA and NPMP) is found in smaller regions (labelled 'SP, NPMP, AM',  and quarter- 
harmonic chaotic attractor or QCA). SP and SDP are separated by SPMQ, a state 
characterized by stable pairing but weaker. modulated quarter-harmonic oscillations 
(denoting non-stationary second pairing). Other modulated states (MOD S and 
MOD SQ) are not distinctive and are therefore combined in figure 3 (h)  under the title 
aperiodic modulations (AM). In this paper, 'modulations' refers to both amplitude 
and frequency modulations unless otherwise noted. For FO, dominant oscillations 
occurred only at  ,f,,.. 

In addition to these measurements. the streunwise evolutions of the fundamental 
and subharmonics were measured and are presented in the Appendix, 5A.4. 

High-amplitude excitation was not explored for St,) less than unity owing to 
constraints of the excitation system. At larger StI,, however, it is seen that SDP does 
not persist for t i j  much above l o % ,  but gives way to modulations, intermittency and 
chaos with some hysteresis, as it does at  lower ai. These phenomena are interesting 
(since they show that phase can become unlocked at  high as well as low a] ) ,  but, owing 
to finite increments of the forcing controls at such high amplitudes, i t  is difficult to 
achieve the fine resolution in (if necessary to explore this in more detail. However, these 
aperiodic states seem to be qualitatively the same as those seen at  lower aj .  
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3.4. Results in another ,facilit?i 
The existence of periodic and chaotic attractors in forced jets is apparently robust. A 
limited phase diagram was measured in a different axisymmetric jet in our open 
laboratory (rather than the anechoic chamber) and is presented in Broze & Hussain 
(1991); this is in substantial agreement with figure 3. In both experiments, SP and SDP 
were found. While NPMP and QCA were not definitively observed in that work, chaos 
was found near SP and SDP in the open-lab experiments, as was an intermittency 
transition to chaos. 

In $54 and 5 ,  the reconstructed attractors are analysed for periodicity or chaos using 
a variety of techniques : spectra, phase portraits, Poincare sections and estimation of 
correlation dimension 1' and largest Lyapunov exponent A,. Details of these procedures 
are given in the Appendix, gA.3. 

4. Periodic attractors 
4. I .  Stcihlt pairing 

Figure 4(u) shows a characteristic signal for stable pairing. The signal is periodic with 
dominant period 7 = 2/fi,. = 0.00758 s, and there is very little variation of the 
waveform amplitude or shape. Correspondingly, the spectrum (figure 4h) is dominated 
by sharp peaks at the subharmonic $jic = 132 Hz and its harmonics. The highest peak 
is roughly 6CL70 dB above the background, indicating a low-noise signal. There are 
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weak sidebands of these peaks and a small, low-frequency peak, suggesting a slight 
amplitude modulation. In addition, there is a pair of low-amplitude peaks centred on 
the quarter-harmonic (+.fir  = 66 Hz), indicating, presumably, infrequent as well as 
incomplete second pairings. 

A phase portrait (figure 4 c) was reconstructed using time-delay embedding of the 
digitized signal. As expected, this reveals a closed loop. Poincare sections were 
constructed on planes through the origin inclined at 135" and 315" and are superposed 
in figure 4(d) in the (e(t) ,  e(t+2~))-plane. The clusters of positive and negative 
crossings have standard deviations of 20.3 and 14.7 units respectively, and their 
centroids are separated by 3034 units. The tight cluster distribution relative to their 
separation distance is evidence of the low noise level. Note that parts of the axes are 
excluded in figure 4(d) in order to reveal the details of the clusters, showing no  
recognizable structure. 

The correlation dimension (figure 4e) was determined to be v = 1.04 with scaling 
limits = 6.25 and x,,,~ = 10.23 (.Y = log, Y, where r is the distance in phase space). 
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These limits correspond to a scaling factor of 2’’.98 % 16, which is fairly large for typical 
experimental data. (The scaling factor is the ratio of the largest to the smallest distances 
in phase space at  which scaling is seen.) This dimension value and large scaling factor 
is consistent with a low-noise limit cycle. Figure 4(,f’) shows the estimate of A, 
converging to approximately A ,  = 0.35 b.p.s. (bits per second) or 0.002 b.p.0. 
(bits per orbit). Based on our experience with the Wolf algorithm, values of 
0 < A, < 0.01-0.02 b.p.0. are not large enough to be considered definitely positive and 
probably represent a zero value of A, to within the margin of error. 

4.2. Stable double pairing 
The other periodic attractor found in this parameter space is SDP. From the phase- 
locked measurements of SDP at Sf, = 1.17 (Bridges & Hussain 1992), it seems that full 
merger of four vortices does not take place; in their measurements, the leading paired 
vortex interacts with two trailing vortices, and only one of the trailing pair merges with 
the leading vortex. It is unknown whether a complete merger would occur elsewhere 
in the parameter space. Nonetheless, this state is characterized by a strong quarter- 
harmonic. Figure 5 ( a )  shows a sample time trace of SDP; the trace is periodic with 
period 7 = 4,’& = 0.0152 s and shows little variation of the waveform or the 
amplitude. The spectrum (figure 5h)  is dominated by sharp peaks at $,fc7 = 66 Hz and 
its harmonics, with the highest peak rising 70 dB above the background. There are low- 
amplitude sidebands around i , f p 7  (and odd harmonics), analogous to those found near 
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if,, in SP. These presumably represent very infrequent as well as incomplete third 
pairings (Zaman & Hussain 1980). 

The reconstructed phase portrait is seen in figure 5(c ) .  As with SP, the phase portrait 
of SDP is a closed loop with very little scatter of the trajectories. Poincare sections 
constructed at  45" and 225" (figure 5 4  reveal two small and widely separated clusters. 
The standard deviations of the clusters for positive and negative crossings are 1 1.3 and 
11.1 units respectively, while the cluster centres are separated by 1837 units. Note, 
again, the exclusion of parts of both axes. 

1.07 with 
scaling limits (5.15, 9.52). These h i t s  correspond to a scaling factor of z 21. 
Figure 5( f ' )  shows the estimate of A,  converging to an approximate value of 
A ,  % 0.036 b.p.s. or 5.5 x lo-' b.p.o., again approximately zero. 

Sur7ztmr.j. ofperiodic strrtes The signals, spectra, Poincare sections, dimensions (near 
unity) and A, (near zero) indicate that these states are essentially limit cycles. The high 

From correlation dimension (figure 5 e ) ,  i t  can be determined that I'  
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peak-to-noise ratios in  the jpectr'a. tight clusters i n  the Poincare sections and large 
scaling r;\ngcs 01' the correlation exponents emphasize that the noisc is quite small. 

5. Chaotic attractors 
5 .  1 . ~ i i ~ i ~ i [ ~ i . - / i ( i i . ~ t i ~ ) i i i ~ ,  c/i(iotic cittrrrc~ior 

S i , y i i ~ /  t u i d  , spc ' ( , t i . /m i  The chaotic attractor QCA has a much more irregular signal and 
spectrum than the periodic attractors but is nonetheless recognizable. Figure 6 ( u )  
sl1ou.s a time trace over a period of 0.4 s which seems to  be a sequence of large 
oscillations. Notice that. when peaks are high. their spacing corresponds to the 
quarter-ha~-monic period (T,, = 0.0 15 s). indicating that two pairings are occurring. 
These peaks often occui- in groups of three (e.g. t = 0.05. 0.15. 0.36). At other times 
(e.9. 0.08 < i < 0.12). ~,fampli tude is low (but noticeable), and the peaks are separated 
by the subharmonic pcriod. indicating single pairing with delayed (or incomplete) 
second pairing. Occasionally. a small peak occurs separated from the next later peak 
by the fundamental period. These are usually at  the end of a quarter-harmonic trio and 
m a y  indicate ;I single L'ortcx passing Lvithout pairing. 

The spectrum (figure 6h) is a n  easily recognized indicator of QCA, repeatable at  
many different parameter values. There is a broad peak centred at the quarter- 
harmonic (66 Hz) and sharp sidebands on either side ofi,f;,,. ( 1  32 Hz) and,f;, (264 Hz). 
The subharmonic is almost completely absent, indicating a strongly modulated 
amplitude. From the sharp sidebands on the subharmonic, i t  would seem that its 
inoddations must be fairly periodic. whereas the broad peak at $,ji,r indicates that its 
modulations arc not. The sharp peaks rise only 20-30 dB above the background, 
compared with 60-70 dB for the periodic attractors. The spectral background is 
broadband and falls off as frequency increases. dropping roughly 20 dB from 150 to 
400 Hz. These spectral features are observed wherever QCA is found in the parameter 
space; for example. nearly identical spectra are seen at (Sf,, = 1.19. (if = 0.14%) and 

Phu.ve por.rr.crir o t i d  Poinccrrc; .vrctions The two-dimensional phase portrait (figure 6 c) 
reveals a dense tangle of trajectories. cycling in and out of the centre as the amplitude 
modulates. Many projection angles were investigated to  find one that revealed more 
structure of the attractor, but none is substantially better than the one shown. As will 
be shown below, this attractor has a dimension near 3 and requires an embedding 
dimension of 4-5; therefore. two-dimensional projections are likely to be dense and 
may not reveal any clear structure. The largest loops correspond to the first type of 
time-trace segment, where the signal amplitude is high. There are loops of intermediate 
amplitudes which correspond to the second type of signal segment. There are usually 
two loops for each quarter-harmonic period for this type, since the shape of the signal 
is high peak - shallow valley. low peak - deep valley. Finally, some trajectories pass 
very near the origin when the signal amplitude goes to nearly zero between successive 
modulations. 

Figure 6 ( d )  shows the Poincare section of this attractor at  45" (continuous through 
the origin). in which some structure can be seen. The crossings are negative in the broad 
ridge running diagonally from ( -  150. - 1700) to ( 1  500, 0) and positive in the curved 
area running from ( - 1000. 1700) to (-200, 0). 

Dinicwsior~ ~ r t i d  Lj~ipir t ior  c.vponcnf The curves in the correlation exponent for QCA 
(figure 6c) begin to converge for embedding dimension 171 3 4. The minimum 
embedding dimension was determined to be VI,,,,,, = 4 (see the Appendix, 5A.3). 
Embedding dimension greater than 5 is not considered because of the heuristic 

Lit (St,, 1.17. N ,  = 22.5%).  
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argument that the system should have no more than five dynamical variables (three 
amplitudes and two phase angles). For M I  = 4, v M 2.72 over the range 6.35 d 3i < 8.99; 
for nz = 5 ,  I ’  z 2.83 over the range 6.56 ,< x ,< 9.28. One can see from this figure that 
the dimension estimate is not likely to exceed 3.2-3.3 regardless of the embedding 
dimension used. The scaling factors are between 6 and 7; while not nearly so large as 
those for SP ( Y 16) and SDP ( z  21) this would still cover a range of distances of 
approximately 130 to 880 in the two-dimensional phase portrait (figure 6c). 

The estimate of the largest Lyapunov exponent Al  is presented in figure 6(,f). After 
some initial oscillations, the value has converged after 60000 points (1 1.4 s, 750 periods 
of i f e l ,  z 1250 orbits) to A, M 59 b.p.s., or A, z 0.54 b.p.o., when normalized by 4 
times the reconstruction time delay (0.0091 s, between the sub- and quarter-harmonic 
periods 0.0076 and 0.01 52 s respectively). The exponent A, is positive, indicating chaos. 

Spectra of amplitudes of modulu fing components We investigated the question as to 
whether the modulations of the subharmonic s and quarter-harmonic q are periodic. 
Two complex demodulations were performed, using i,LX and as the centre 
frequencies, to extract the envelopes of q and s from the signal. The low-pass filter used 
in the demodulation had a passband of 20Hz and a stopband of 30Hz, and was 
recursively applied to achieve 60 dB attenuation. The extracted envelopes were 
Fourier-analysed to determine their dominant frequencies, and the spectra are 
displayed in figure 6(g,  h). In the spectrum of the envelope of q (figure 6g), there is a 
peak atJ M 19 Hz which sits on a broadband background 10 dB down; this background 
rises at lower frequencies and, a t f z  7 Hz, actually exceeds the amplitude of the 19 Hz 
peak. In contrast, the spectrum of the envelope of s (figure 6h)  shows a peak at 
f z 19 Hz which is 20 dB above a background of relatively uniform amplitude. Clearly, 
then, the modulation of s is much more periodic than that of q. 
Eflect of sampling location on realizations of QCA Realizations of this attractor were 

sampled at many points in physical space, always with similar invariant measures. For 
example, samples were taken at (St ,  = 1.27, af = 1.76 YO) at half-diameter 
increments in .Y along the centreline between 0.5 d x / D  d 3.5 ; for all cases, Y is between 
2.5 and 3.0, A, is between 0.2 and 0.5 b.p.o., and Kolmogorov entropy is between 0.3 
and 0.6 b.p.0. The scaling factors for x / D  = 1.5, 2.0, 2.5, 3.0 and 3.5 are 6.0, 4.7, 2.3, 
2.0 and 1.5 respectively. For x / D  3 4.0, no scaling is observed. For x / D  3 2.5, the 
probe begins to measure small-scale fluctuations, presumably because the inner edges 
of turbulent vortices actually pass over the probe. The low-dimensional dynamics of 
large-scale structures are obscured by such fine-scale motions which degrade scaling in 
dimension calculations. This points to the need for proper probe placement so that the 
global dynamics, rather than the internal dynamics of the individual vortices, are 
captured. Measurements should be made within the potential core (which carry 
smooth footprints of the vortical structures in the shear layer), rather than the 
turbulent vortical layer. For measurements at  axial locations where this is not possible, 
some judiciously chosen filtering might be employed. However, the impact of various 
types of filtering on measures of chaos is a subject unto itself (see e.g. Mitschke, Moller 
& Lange 1988), and no attempt is made here to investigate that. 

Occurrence of QCA in severuiparameter regions As mentioned above regarding the 
chaotic spectrum, this attractor is found in more than one region in the parameter 
space, both above and below SDP. Figure 3 shows a small band of chaos near 
(1.1 6 St, ,< 1.3, uf z 22%). In addition, chaos can be found at  low excitation 
levels, although the realizations are sometimes noisy. Realizations at (Sr, = 1.19, 
af = 0.14 %) show characteristics similar to the example shown in figure 6 (S t ,  z 1.19, 
uf = 1.06%): 1’ z 2.8 with a scaling factor of almost 5, and A, M 0.7 b.p.0. 
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FIGURE 7. Phase diagram of the transitional jet around nearly periodic modulations of pairing 

Summary The characteristics presented here (spectral broadening and filling, v > 2, 
A, > 0) indicate that QCA is indeed a chaotic attractor that results from non-periodic 
modulations, particularly of the quarter-harmonic. Its persistence at different spatial 
locations as well as in different regions of the parameter space indicates that QCA is 
not a chance occurrence but is instead an intrinsic part of the dynamics of this system. 

5.2. Nearly periodic modulations of pairing 
Local phase diagram Figure 7 shows the phase diagram for the region bounded by 
(0.5 < St, < 0.85, 0.01 6 af  d 0.10), in which several different states can be dis- 
tinguished : fundamental only (FO), stable pairing (SP), aperiodic modulations of $,f 
(MOD S), nearly periodic modulations of pairing (NPMP), and stable pairing with 
modulated quarterharmonic (SPMQ). SP is the dominant state in this diagram for 
higher St, and af (upper right), while FO dominates at the lower St, and af (lower left). 
In between are seen SPMQ, MOD S and NPMP, with some intermittency. The most 
remarkable feature is the relatively dense intermingling of states occurring in the 
central region, where changes of a fraction of a percent in af lead to several changes 
of state. For example, at (St ,  = 0.65, 2.8 YO < af 6 5 YO), the state changes from MOD 
S to SP to NPMP to SP to MOD S to SP to SPMQ. 

Signal and spectrum In this region, we focused our attention on NPMP, seen in 
figure7at(St, = 0 . 6 5 , a f =  3.2,3.3,7.3and7.8Y0),andat(St, =0.71,u, = 3.7% and 
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7.4 YO). It is of interest because (i) it is the only evidence of nearly quasi-periodic flow 
in this system and reveals interesting attractor structure, and (ii) it offers an 
opportunity to investigate the transition scenario (to be addressed in a future paper). 
Figure 8 (a)  shows a representative time trace of NPMP. Each modulation is somewhat 
different from the rest; the period of modulation, the envelope shape and the waveform 
at various stages of the modulation are similar but not exactly the same. This signal 
corresponds to 0.5 s (66 periods of &f) and contains almost 3 periods of the modulation, 
each containing approximately 22 periods of the subharmonic. The amplitude 
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variations indicate that the pairing location is shifting up- and downstream almost 
periodically. Furthermore, at the minimum amplitude point between the modulation 
wavepackets, the phase shifts by x. This can be seen by tracing pairs of peaks (first 
large, then small) as the envelope diminishes. There is always one first peak with no 
smaller peak after it (as indicated by arrows in figure 8a), denoting the phase shift. 
Since the subharmonic period is equivalent to 2x, a x phase shift indicates that a single 
vortex escapes pairing at the end of each modulation period. 

The signal is quite similar to that observed by Husain & Hussain (1989) in their 
detuned excitation study in a mixing layer. In their experiments, they controlled both 
fundamental and a detuned subharmonic (f and + f + A f )  to produce periodic 
modulation of subharmonic amplitude. In the present experiments, however, controlled 
forcing is only at the fundamental, and the subharmonic is self-modulating uia 
feedback. Corresponding to this, the spectrum (figure 8b) shows twin peaks (plus 
additional harmonics of the modulation) on either side of the subharmonic frequency 
(;A, = 132 Hz); the spectral power at ;fez is actually 25 dB below the sidebands. There 
is a low-frequency peak, with two harmonics, at f z 7 Hz corresponding to the 
modulation frequency. The peaks are slightly broadened, but the spectrum is not filled 
between peaks, with valleys 40 dB or more down from the peaks. 

Phase portraits and Poincare' sections Figure 9 shows a phase portrait viewed from 
four different projection angles, used to reveal as much of the attractor structure as 
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possible and to identify a 'better' viewing angle for exploration of the structure. Rather 
than reconstructing in two dimensions using only (e(t) ,  e(t + T ) ) ,  these are reconstructed 
in three-dimensional space (e(t) ,  e(t + T ) ,  e(t+ h)), rotated to selected viewing angles 
and viewed from far away along rays defined by their polar and azimuthal angles q5 and 
0 respectively (identified in the figure caption). Since there are only three dynamical 
variables (two amplitudes and a phase difference), the attractor should be fully revealed 
in three dimensions ; this was confirmed by computing the minimum embedding 
dimension. Figure 9(a) is equivalent to the usual two-dimensional phase portrait 
(q5 = 0", 8 = 0"). Trajectories can be seen looping into and out of a small folded region 
near the centre, with the amplitude of each loop determined by the modulating 
envelope (see figure 8a).  The attractor looks drastically different in a view along the 
(q5 = 0", 8 = 45") line (figure 9b); it appears as if it might be a hollow cylinder or 
'funnel', fluted open at the upper end with trajectories forming bundles as they cross 
in an x pattern in the front, but flaring out as they loop around the back. Along the 
(4 = 0", 8 = 90") line (figure 9c) ,  the view gives the impression that the motion is not 
necessarily in planes but may form a tubular shape (see discussion of the Poincare 
section below). Other views at q5 = 0" (e.g. 8 = 135" or 180") show nothing particularly 
revealing and are not shown. Finally, figure 9 ( d )  shows a view along q5 = 45", 8 = 45", 
which is figure 9(6) tilted forward by 45", looking down into the funnel; it reveals no 
opening, as one might expect from viewing figure 9(a-c). While these four views do not 
reveal the attractor totally, they together give a much better perception of the attractor 
than a single two-dimensional projection does. 

The Poincare section (figure 10a) was made by cutting the reconstructed attractor in 
figure 9 ( d )  with a plane normal to the page and aligned with the z-axis. This reveals 
two open loops, verifying that the shape in figure 9(c) is indeed a hollow tube similar 
to a torus. It is not clear from figure 10(a) whether the scatter in the Poincare section 
is due to noise or chaos; features such as the ones near (x, y )  M (-500, 500) and 
(- 1000, 900), as well as in the region (600 < x < 1300,y z - loo),  look like folds and 
accumulation points which might be associated with the breakup of a torus in a three- 
frequency route to chaos. 
Dimension and Lyapunov exponent: quasi-periodicity and chaos? NPMP has both 

quasi-periodic and chaotic characteristics. Calculation of the correlation exponent 
(done for a number of data sets) typically shows two scaling regions (e.g. see figure 
lob). The meaning of the two regions is not obvious; it might imply slightly different 
scaling exponents, and perhaps different dynamics, at different scales. Based on this 
hypothesis, A, values were calculated separately at these two scales, being usually 
positive at smaller scales but approximately zero at larger scales. These results are 
presented and discussed below. 

The correlation exponent for data at (St, = 0.68, af = 3.4%) is shown in figure 
lO(6). For embedding dimension m 2 4,  a peak develops separating two regions with 
slightly different values of v :  higher at smaller scales in phase space than at larger 
scales. Local averages at x M 7 (recall x E log, r ;  r is distance in phase space) yield 
v z 2.1 form = 3 and v M 2.3-2.4 form = 4;  local averages at x M 8.5 yield v z 1.9-2.0 
for m = 3 and v E 2.3 form = 4. This difference (0.3-0.4) between v in the two scaling 
regions is less than that (up to 0.5-0.8) for other data sets taken from this region of the 
parameter space. Typically, the region at smaller x has higher v, ranging up to v = 2.8, 
while in the higher-x region v may fall to as low as 2.0. This separation into two regions 
does not appear to be an error in the estimator for the following reasons: (i) it does not 
appear in calculations for data from other states; (ii) it appears in almost every set of 
NPMP data; and (iii) the point-skipping correction of Theiler (1986) was employed (to 
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an extreme, skipping lo3 points z 20 orbits out of lo6 points). The Theiler correction 
ensures that there is no temporal correlation between points in the dimension 
calculation, which often leads to oscillations in the correlation exponent. Nonetheless, 
these two regions persist. 

The estimates for A, at m = 3 for this case (St ,  = 0.68, af = 3.4 %) are seen in figure 
lO(c, d ) ,  and for m = 3 and 4 in table 1. (A calculation of minimum embedding 
dimension showed that m = 3 suffices.) At small scales in phase space, there is quite a 
difference between A, at m = 3 and m = 4 (0.25 and 0.049 b.p.0. respectively), but both 
are clearly positive. At large scales in phase space, however, the A, values are roughly 
an order of magnitude smaller in both embedding dimensions (0.017 and 0.0071 b.p.0.); 
as mentioned in $4.1, these values are probably zero to within the margin of error. For 
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other NPMP data sets sampled, typically 0.1 < A, 6 0.5 b.p.0. for small x and A, z 0 
for large x (although A, > 0 for both regions in some cases). Results for A, were 
confirmed with the Kruel-Eiswirth algorithm (Th.-M. Kruel & M. Eiswirth 1992, 
personal communication). 

These results seem to indicate regular behaviour at large scales in phase space but 
chaotic behaviour at small scales. This is consistent with the PoincarC section, which 
shows a loop structure at large scales but with local folds and accumulation points and 
possible additional small-scale structure. Converting the scaling limits for this case into 
actual distances in dimension 2, one finds that the ranges are approximately 160-430 
units (i.e. integer levels of the 12-bit a/d converter) for the chaotic region and 430-720 
units for the regular (approximately quasi-periodic) region. Looking at the Poincare 
section (figure 10a), the smallest chaotic scale (160 units) approximates the thickness 
of the bands that make up the loops, while the largest regular scale (720 units) 
encompasses roughly one quarter of the maximum spatial extent of the section and is 
close to the standard deviation n (653 units) of the time series data set; is a good 
measure for the reconstructed attractor size. The intermediate scale (430 units) 
roughly corresponds to the distance across the openings in the loops. If these 
correspondences have physical significance, then the scenario might be as follows : (i) 
for scales smaller than the thickness of the bands, the distribution of crossings is 
essentially random; (ii) for scales larger than the band thickness but smaller than the 
loops themselves, fractal scaling and chaotic behaviour is seen; and (iii) for larger scales 
up to the size of the attractor, regular scaling (v z 2) and regular (viz., approximately 
quasi-periodic) behaviour is seen. Does this mean the attractor is both quasi-periodic 
and chaotic? Not necessarily; it may just be an artifact of the data analysis tools 
employed, particularly the Wolf algorithm for A,, which is rather scale-sensitive. 
However, it is quite probable that this dual nature would be seen in any attractor that 
is chaotic but close to quasi-periodicity. Therefore, the best characterization of NPMP 
is that it is a chaotic attractor that has quasi-periodic features at coarse resolution. 

6. Other states 
6.1. Fundamental only 

In figure 3 (b), there is a large ‘fundamental only’ (FO) region which occupies much of 
the diagram at lower St, and af .  (Our experiments show that it can extend at least as 
low as St, = 0.25.) Within this region is the ‘preferred mode’ (Hussain & Zaman 
1981), defined by the St, (= 0.3-0.4) producing maximal amplification of an 
axisymmetric fundamental disturbance; generation of subharmonics in this mode is 
negligible. 

Figure 11 (a) shows a typical time trace for FO sampled at (St ,  = 0.40, af = 1.0 %). 
FO is not nearly so periodic as the time traces of SP and SDP. The fundamental period 
is easily distinguished, but the waveform in each period is different from the others; 
there is a great deal of ‘jitter’ (i.e. non-uniformity) in the signal. At no point in the 
parameter space was a periodic signal observed for this state. In the spectrum for FO 
(figure 11 b) at this point in the parameter space, the peak at the forcing frequency is 
sharp, but is only 25 dB above the background, compared to about 70 dB for SP and 
SDP. The spectral background is a high pedestal which is nearly constant between the 
fundamental and first harmonic, and falls off rapidly at higher frequencies. The peak 
frequency of the background pedestal does not remain fixed relative to the fundamental 
when St, is changed slightly; the pedestal St,  (based on the peak frequency of the 
hump other than f,, and its harmonics) appears to remain approximately constant 
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regardless of the excitation St,. This indicates dynamics that are independent of the 
excitation; indeed, in the absence of any periodic forcing, a spectral peak is seen which 
corresponds to St, = 0.4. Many have speculated that this is due to natural feedback 
from vortex rollup itself. While this may be true, no computation using data from 
unexcited jets in our lab has ever revealed measurable dimension, even using up to 
5 x lo6 data points (i.e. more than lo5 attractor orbits). The broadband receptivity of 
the jet instability is most likely responsible for the pedestal, regardless of feedback 
dynamics. 

The phase portrait for FO at (St, = 0.40, af  = 1 .O "/o) has the appearance of either 
a very noisy limit cycle or perhaps a torus (figure 11 c). Figure 11 (d) shows PoincarC 
sections at 45"; unlike the sections of SP and SDP, the clusters of positive and negative 
crossings are very diffuse. There is no evidence of an open loop in either the positive 
or negative crossings, ruling out the possibility of a torus (and hence quasi-periodicity). 

The correlation exponent (not shown) has very poor scaling; in embedding 
dimension m = 3, v x 1.5 with a scaling factor of only about 2. Since the scaling region 
is small, we looked for higher dimension at other scales; however, no other scaling is 
seen for m < 10. The Lyapunov exponent A, (not shown) is more surprising; it is 
negative: A, z - 14 b.p.s. (-0.06 b.p.o.)! However, in tests using the Wolf algorithm 
with inputs from the v scaling region, we have found that a noise-contaminated sine 
wave can exhibit a small negative A,; we term this 'noisy periodicity'. This phenomenon 
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(i.e. A, < 0) is presumably an artifact of the algorithm itself, since a sine wave (i.e. limit 
cycle) should have A, = 0 and noise should have A, > 0. 

6.2. Stable pairing with modulated quarter-harmonic 
Between SP and SDP in the phase diagram (and other locations as well), a state 
(SPMQ) is observed in which the subharmonic is stable and strong (as observed in the 
instantaneous spectrum), but the quarter-harmonic is modulated and weaker than for 
SDP. The presumption here, not verified by educed spatial vorticity patterns, is that the 
first pairing is periodic, but the second is not and modulates aperiodically. A time trace 
of this state (figure 12a) shows that the amplitude is fairly constant with a weak 
modulation; although this particular realization has fairly periodic modulations, such 
is not always the case. A frequency spectrum of SPMQ is shown in figure 12(b). The 
if , ,  peak is about 5 dB lower than if,,, and there are modulation sidebands on either 
side about 25 dB down. There are also sidebands near the base of the $ f e z  peak, but 
these are weaker than those around :fez. If the modulations were less periodic, the 
sidebands would be more smeared with a resultant peak broadening, particularly 

A phase portrait (figure 12c) reveals a double-loop structure, consistent with the 
shape of the time trace: large peak-shallow valley, small peak-deep valley. The spread 
of trajectory bundles is much more than in SP or SDP owing to the larger modulation 

of +fez.  
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of the envelope. Based on the signal and phase portrait, one might expect the 
modulation to appear as open loops (like a torus) in the Poincare sections (in the 45" 
planes; figure 1 2 4 ,  but this is not the case, thus eliminating any expectation of 
quasi-periodicity . 

The correlation exponent (not shown) has a narrow scaling region near x z 8.5 in 
which u z 1.3 for m = 3 with a scaling factor of less than 3. Again, as in FO, A, < 0. 
The only similarity between SPMQ and FO is that their signals appear to be periodic 
with an aperiodic component superimposed. Unlike FO, the aperiodic component in 
SPMQ appears to be somewhat organized. Nonetheless, both cases reveal similar 
results: 1 < u < 2 and A, < 0. 

6.3. Aperiodic modulations 
The label 'aperiodic modulations' covers a variety of states with modulated velocity 
traces and spectra with peaks (at i f e z  or if,,, and harmonics) broadened to varying 
degrees. Figure 13 shows time traces and spectra of two cases in this category, both 
captured at St, = 1.19. In the first case (af  = 0.30 YO ; figure 13 a), one sees a modulated 
signal which appears to have a single 'carrier ' frequency (if,,) ; longer realizations 
reveal that the modulation envelope has no recognizable shape or repeated feature. 
There are large, broad peaks in its spectrum, centred at i f e ,  and its harmonics, with 
small sidebands around these peaks (figure 13 b) ; much weaker, broad peaks are found 
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at $hz and its odd harmonics. The time trace and spectrum apparently indicate vortices 
whose pairing locations fluctuate aperiodically (or, occasionally, they do not pair), as 
well as infrequent and/or incomplete second pairings. By comparison, the second time 
trace (for af = 0.54 YO ; figure 13 c) reveals the quarter-harmonic (for 0.17 5 t 5 0.29), 
which appears intermittently in longer realizations. The corresponding spectrum 
(figure 13d) shows significantly more quarter-harmonic than in figure 13(b), the ihx 
peak being only 10 dB (compared with 40 dB) down from the ihz peak. While similar 
to the first case (af = 0.30 YO), the time trace and spectrum suggest that second pairings 
occur more frequently in this case. 

The point of these observations is that while frequent pairings (and less frequent 
second pairings) occur in AM, there is no obvious pattern (e.g. nearly periodic 
amplitude modulations or periodic appearance of the quarter-harmonic). Behaviour 
similar to these two cases is seen at many other points in the parameter space. All their 
signals have seemingly random modulations and a non-stationary appearance ; the 
signal amplitude, shape of the amplitude modulation envelope and/or dominant 
frequency vary in time but may remain the same for long periods of time before each 
change. All spectra for AM have peaks at +Lx or f fez (or both) which broaden at their 
bases without the strong, distinctive sidebands seen in QCA and NPMP. While the 
relatively sharp spectral peaks with fairly low background might suggest low- 
dimensional dynamics, signal analysis for chaos in AM has revealed little ; realizations 
were taken for many parameter values and analysed for v and A,  with no definitive 
results. For some realizations, the correlation integral has no scaling region ; for others, 
a small scaling region is found where 1 .O < v 6 1 S, and A, z 0 or perhaps even slightly 
negative. 

6.4. Why is chaos not measurable for  FO, SPMQ or A M ?  
As has been discussed briefly in §$6.1-6.3, these states show a puzzling lack of scaling 
in dimension calculations or negative largest Lyapunov exponents. While we do not yet 
have an answer to this question, we do have several hypotheses which may explain one 
or more cases; the first three relate to lack of scaling and the last two relate to negative 
Lyapunov exponents. These five possibilities are enumerated below. 

Intermittencies? In the AM regions, it is likely that there are many different states 
close to each other in the parameter space, as was seen in figure 7 for the region around 
NPMP. (We devised simple iterative map models of pairing which exhibit densely 
packed states as well.) If this is the case, the non-stationary nature of the signals, the 
lack of scaling, etc., in signal analyses may be due to intermittency, i.e. the alternation 
of the system between two (or more) states. If two intermittent states are sampled, the 
reconstruction of any ' attractor' may exhibit no scaling (although scaling is possible; 
this will be described in a future paper). These intermittencies can naturally occur if the 
parameters are set on the boundary between two states, or they could be due to small 
parameter drift. If the states were dense in the parameter space, only very slight drifts 
would be necessary. 

Non-axisymmetric vortex dynamics? During simultaneous velocity measurement 
and flow visualization in a low-Re, water jet, Berger (1993) observed modes (near SDP 
in parameter space but at lower af) consisting of intermittent switching between 
axisymmetric and tilting modes (including crosslinking of vortices with both their 
upstream and downstream neighbours simultaneously). The time traces for this state 
were quite similar to those seen for AM in the present experiments (e.g. figure 13), 
suggesting that intermittent tilting may occur for AM. The origin and dynamics of 
tilting modes are unknown and may be high-dimensional or even noise-driven. 

High-dimensional chaos? It has been seen that periodic forcing at particular 
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frequencies and amplitudes can lead to low-dimensional, deterministic behaviour. 
However, even if the flow is deterministic, there is no guarantee that the behaviour will 
be low-dimensional. Our lack of ability to estimate Y and A, could be due to the fact 
that the dynamics has high dimension. Ruelle (1990) estimated that the number of 
points Nu necessary to calculate dimension should scale as Nu - pPdl2, where p is the 
ratio of the minimum scaling size to the size of the attractor (i.e. approximately the 
inverse of the scaling factor in a dimension calculation) and d is the attractor 
dimension. For Lyapunov exponents, he estimated Nh - p P .  If these states are high- 
dimensional, it is quite possible that their dimension could not be estimated using the 
moderate sample lengths we used. 

Convective chaos? Deissler & Kaneko (1987) defined chaos in convectively unstable 
flows as the divergence of similar initial states measured in an advecting frame. Their 
tests showed negative A, using data from a stationary frame but positive A, in a frame 
advecting at the group velocity of the most unstable mode. Since this flow is locally 
convectively unstable, this is an appealing explanation for negative A,. However, low- 
dimensional temporal dynamics (viz., periodic and chaotic states) are evidence that 
global modes exist (see $82.1-2.3) that can be characterized using data from a single 
stationary probe. Convective chaos might be expected when the resonance is broken, 
due to strong noise or weak feedback, but this is not the case here. For example, SPMQ 
is observed even at a f  > 10 YO, whereas deterministic temporal states can be seen at 
af z 1 YO (figure 3b); why would noise be more dominant or feedback weaker in the 
former case than in the latter? 

Noisy periodicity? As pointed out in $6.1, a noise-contaminated sine wave can 
appear to have A, < 0 using the correlation dimension/Wolf algorithms; we call this 
‘noisy periodicity’. The reason for this has not been discovered, but it opens up the 
possibility that the dominant feature may be periodic with superposed high- 
dimensional chaotic fluctuations (which have the same effects on the calculations as 
noise). These fluctuations would limit the scaling region of the (one-dimensional) 
periodic fluctuations in the correlation exponent calculation and would also increase 
the estimate of dimension. If A, is calculated at the scales (in phase space) of the periodic 
motion, one expects A, = 0. This seems to occur in some cases of AM, but in other 
cases of AM, as well as SPMQ and FO, A, < 0. This raises a question as to whether 
the negative A, is due to the flow or the algorithm; no answer has been found yet. 

7. Concluding remarks 
The application of dynamical systems techniques to transitional jet flows has been 

successful in this study, since well-characterized attractors have been found, occupying 
sizeable regions of the parameter space. Our conceptual model of the jet dynamics is 
supported by experimental evidence : the measured effects of feedback on exit phase 
difference q5, the strong self-modulation of the chaotic attractors and aperiodically 
modulated states (due to variations in #, discussed more in a future paper), and global 
modes as indicated by temporal attractors, measurable over a range of locations in 
physical space. Clearly, the forced transitional jet behaves as a dynamical system. 

We have proposed a definition that distinguishes between physically and dynamically 
open flows. Although this distinction is obvious in some ways, the point must be made 
that a flow being physically open does not mandate it to be dynamically open; this 
question is related to the nature of its instability rather than necessarily its physical 
boundaries. Even in the case of convective instability (which makes a flow dynamically 
open), global modes can occur via feedback (which renders the dynamics closed). 
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Global modes - a concept not new in this research ~ are clearly found due to feedback 
from volume sources, i.e. vortex pairings (as suggested by Huerre & Monkewitz 1990), 
rather than boundary sources such as downstream obstacles. 

What does the presence of periodicity and chaos say about the vortex dynamics in 
transition? Since the fundamental is being forced, each vortex rollup occurs at 
approximately the same saturation amplitude and location. However, the evolution of 
subharmonics, leading to vortex pairings, is not forced but only indirectly controlled. 
Obviously, exact periodicity of signals implies that the evolution of each pair of 
vortices (or pair of pairs in the case of SDP) goes through exactly the same sequence 
of events as the pair(s) before. In the chaotic cases (NPMP and QCA, the interactions 
can range from complete pairing to no pairing at all, depending on the initial 
amplitudes and phase differences of the fundamental, subharmonic and quarter- 
harmonic. The interactions differ from pair to pair, but feedback enables the 
interaction of one pair to influence the next pair, and so on. The presence of periodicity 
and temporal chaos, simply put, means that the long-time sequence of two-dimensional 
vortex interactions is deterministic, owing to feedback, rather than noise-driven. 

What is the spatial extent of this dynamical system? Clearly, owing to breakdown, 
it will not persist far beyond the end of the jet potential core. The precise distance, 
however, will depend on where two-dimensional instabilities cease to dominate; this 
depends on the state of the system. For example, SP shows only one well-organized 
vortex pairing; SDP, involving two pairings, should continue further in space than SP. 
This is supported by the phase-averaged vorticity contours of SP and SDP from 
Bridges & Hussain (1992), which show organized vortical motions as far as perhaps 
x / D  z 4 for SP and beyond x / D  z 5 for SDP. Centreline-amplitude measurements 
show that the quarter-harmonic reaches its peak near x / D  z 3 for SDP but not until 
x / D  z 4-5 for QCA ; time-averaged two-dimensional measurements show that 
significant hydrodynamic features (such as Reynolds stress) differ for SDP and QCA 
up to x / D  z 6-8. In most cases, then, the dynamical system is not expected to extend 
beyond about 10 diameters. 

Can dynamical systems techniques be applied to more complex geometries and more 
turbulent domains than this (near field of an initially laminar) jet, or even in 
dynamically open flows? While the outlook is not good, dynamically closed behaviour 
in this physically open shear flow means that the answer to the first question might be 
a qualified yes. However, the estimate of a high dimension (> 700) in a low-Re 
turbulent channel flow (Keefe, Moin & Kim 1992) indicates that the approach, even if 
applicable, may be of limited utility. In order to describe such a flow, a large number 
of model equations would need to be developed; in comparison, direct numerical 
simulation (DNS) would require a larger number of equations but having a more 
straightforward derivation (e.g. spectral or finite-difference representations of the 
Navier-Stokes equations). However, even DNS suffers in physically open flows from 
the combined effect of convective instabilities with artificially imposed outflow 
boundary conditions. As to the question of dynamically open flows, less is known. 
While Deissler & Kaneko (1 987) have defined convective chaos, implying determinism 
in an appropriately moving frame, the ability to model or measure this phenomenon 
in laboratory flows is currently beyond our grasp. The techniques currently used in 
spatiotemporal chaos, such as spatial correlations and coherence functions, may have 
little meaning when the flow is convectively unstable, since fluctuations will advect 
through any arbitrary finite boundaries, leaving no imprint on the future of the flow 
in the absence of global modes. Therefore, the exploitation of global modes in 
physically open flows is an attractive avenue for studying and controlling the flow 
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evolution ; concurrently, techniques should be pursued to characterize and model open 
flows in general. 

Transitions between these attractors will be addressed in a future paper. 
Intermittency via tangent bifurcations is the only observed route to chaos. A local 
investigation near the SDP-QCA transition reveals hysteresis and the formation of an 
isolated branch for QCA not reachable by smooth parameter changes. Notably absent, 
however, is any clear evidence of period-doubling or Hopf bifurcations. 

The authors are grateful to Bill Berger for performing many of the phase diagram 
experiments and for figure preparation and to Satish Narayanan for a careful review 
of the manuscript. This work was supported by the Office of Naval Research grant 
NO00 14-89-J- 136 1. 

Appendix. Experimental facilities and procedures 
A. 1. Facility and equipment 

The experiments reported herein were performed in the aeroacoustic jet facility in the 
anechoic chamber in the University of Houston Mechanical Engineering Department, 
which is extensively documented in Bridges & Hussain (1992). The overall layout is 
shown in figure 14 and is described below; letters in parentheses refer to those in the 
figure. The chamber (K) is a ventilated and air-conditioned concrete box set on 44 air 
bearings, with its 0.3 m thick walls (R) lined with a copper plate (S) to shield from 
electromagnetic interference and covered by fibreglass wedges (T). The wedges are 1 m 
long, giving the chamber an ambient sound level of 35 dB above 100 Hz; most of the 
sound comes from conduction through the jet pipe from the laboratory outside the 
chamber. The inside dimensions of the chamber from wedgetip to wedgetip are 
7.6 x 5 x 5 m. Air feeding the jet originates at an inlet (A) in the air-conditioned room 
which contains the anechoic chamber; it is piped to a 7-stage blower (B) driven by a 
40 h.p. DC motor (C) and located outside the main building, its outlet connected to the 
nozzle in the anechoic chamber via a 77 m long iron pipe of 15.25 cm diameter. 
Mufflers and vibration isolation couplings located on either side of the blower 
minimize the transmitted sound and vibration. Between the blower and nozzle are 
several flow conditioning devices. An electrostatic filter (D) removes any dust or dirt 
(95 % of 2 pm particles) which might break hot-wire probes. A controlled cooling coil 
(E) allows the air to be brought back to room conditions for accurate hot-wire 
measurements. Large-radius elbows (1 m radius) are used at all bends to minimize 
secondary flow. Seven screens (F) (24 and 40 mesh) and one honeycomb section (G) 
(0.48 cm cell, 5.08 cm thick) remove any asymmetry and swirl of the flow and are 
shown by short line segments between the last bend and the nozzle (J). 

The DC blower motor is controlled by a Polyspede HP-3 Adjustable Speed Drive 
System, with adjustments for speed regulation, torque limits and acceleration. At low 
speeds, the controller ‘hunts’ for the set point and introduces some low-frequency 
oscillations of the blower (z 0.3 Hz), but this is not significant at jet speeds 
U, 3 5 m s-l (St, < 2); in this study, the speed range used was 7 < V, < 21 m s-l. This 
frequency is three decades lower than the excitation frequency and at least one decade 
below the lowest observed modulation frequencies. At all velocities used, the exit- 
centreline total r.m.s. velocity fluctuations (excluding excitation) were u’/ U, < 0.1 %. 

Bulk excitation, where an acoustic source is located upstream of the nozzle to add 
a longitudinal component of perturbation to the mean flow, was provided through the 
walls of the diffuser (L) by four speakers (M) angled downstream. Perturbations from 
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FIGURE 14. Anechoic chamber and jet facility: A, air intake; B, compressor with mufflers and 
vibration-isolating couplings ; C, DC motor; D, electrostatic filter; E, heat exchanger; F, screens; 
G, honeycomb; H, bulk excitation device; J, nozzle; K, anechoic chamber; L, diffuser; M, speaker; 
N, speaker housing; P, square-to-round section; Q, contraction; R, chamber wall; S ,  copper plate for 
electrical shielding ; T, fibreglass wedges. 

the speakers pass through a wire mesh and cloth screen which are flush with the walls 
of the diffuser and provided to prevent disturbance of the flow by the openings of 
speaker housings (N) into the diffuser. The transfer function of this facility between the 
speakers and the jet nozzle was reported by Bridges (1990). 

Constant-temperature hot-wire anemometers (CTAs), manufactured by AA Labs 
(Israel), were used to obtain the velocity data. The hot-wire signals were not linearized 
with an analog circuit but were converted to velocity by computer, having first been 
calibrated using King’s law for each wire (E2  = A + B U c )  to determine A ,  B and c. In 
order to improve the signal-to-noise ratio, the CTA on-board offset and gain features 
were employed to cover a domain of -0.5 V d E d - 8 V over a range of, say, 
0 d U d  20 m s-l. This did not have a deleterious effect on the coefficient of 
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determination of the least-squares calibration fit (typically, R2 3 0.99999). Com- 
pensation was provided in software for small changes in temperature, pressure and 
humidity; when these values changed significantly, the probes were recalibrated. Two 
types of single-wire probes were employed, one with 5 mm long prongs and one with 
25 mm long prongs. Both used 4 pm tungsten-rhodium wire and had an effective 
length of approximately 2 mm. The overheat ratio used was 1.4. 

All data were acquired on a Masscomp MC5500 computer running on real-time 
UNIX. To eliminate high-frequency transmission noise and aliasing, all hot-wire 
signals were sent to the computer through coaxial cables and lowpass filtered using 
eighth-order Krohn-Hite analog filters just before connection to the sample-and-hold 
board. The hot-wire data were sampled in differential mode with a 12-bit a/d converter 
through a bank of sample-and-hold amplifiers. 

Some of the data analysis was done on a second MC5500 computer. Given the 
amount of data to be analysed, this processing was eventually off-loaded to a Cray 
Y-MP at NASA Ames Research Center. The processing speed of the Cray was typically 
500 times faster than the MC5500 for dimension calculations. 

A two-channel digital Ono Sokki 920 spectrum analyser was used for real-time 
checks of CTA voltage spectra and to determine the forcing amplitude from the hot- 
wire probe placed at the jet exit. Using the calibration function, the normalized r.m.s. 
velocity fluctuation can be expressed in a Taylor expansion up to second order as 
u ' / q  = (Qz  e'2 + 1.5 P2 ef4);, where e' and u' are r.m.s. voltage and velocity respectively, 
E and Uare mean voltage and velocity respectively, Q = [2 E U i C / B  c] and P = [Q/(2 E )  
{ 1 + (1 - c) Q E}] .  Under common operating conditions, the second-order correction is 
essentially negligible, and the transformation from voltage to velocity is linear to 
a good approximation. Therefore, excitation amplitude was computed using 
u;/ V,  = 2 E U;ce(f/(B c) from the calibration and spectrum analyser data. 

A.2. Measurement procedures 
Data for analysis were obtained using hot wires. A long-prong probe was placed in the 
nozzle exit plane at approximately a 30" angle to the jet axis at y / R  z 0.4 such that the 
probe body was out of the flow to avoid shear-layer tones (Hussain & Zaman 1978). 
This reference probe was used to measure u(f (the exit r.m.s. velocity fluctuations at the 
forcing frequency) and U, ('jet exit velocity). A measurement probe aligned with the jet 
axis was placed on the centreline in the jet potential core at axial locations in the range 
1.5 < x / D  6 3.0; all data presented were taken at r / D  = 0. Although the flow is 
spatially developing, there are global modes present due to feedback from the 
downstream flow events. Therefore, any measurement location is adequate so long as 
it is sufficiently far downstream to register fluctuations due to pairings but within the 
potential core so that shear-layer turbulence does not dominate the signal. The 
excitation frequency used in all cases was 264 Hz (with the exception of data presented 
in figure 1), since that corresponds to a resonance frequency of the jet settling chamber, 
permitting high excitation amplitudes. The sampling frequency was chosen typically to 
be 40 times the dominant frequency (to provide high temporal resolution for v and A,  
calculations) and was therefore 2640 Hz for SDP and QCA and 5280 Hz for SP and 
NPMP. 

The phase differences in 5 2.4 were calculated from the fundamental and subharmonic 
phases in the following way. First, the velocity perturbation is defined as follows: 
u(t)  = a cos(27&, t + q5f) + b cos(nAz t + q5s), where the first and second terms represent 
the fundamental and subharmonic respectively. The phase difference is then defined 
as q5 = 4s-&5f. The input was fixed using a phase-locked generator; the phase 
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shifts between the forcing signal and the jet exit perturbation were computed for both 
frequency components from the cross-spectrum and used to determine jet exit phases, 
from which QOut was calculated. 

A.3. Data analysis tools 
The state of the system was determined in various ways: time traces and spectra were 
observed and phase portraits and Poincare sections were constructed using the time- 
delay method. In every case, spectra were averaged over several hundred realizations ; 
phase portraits cover 100-500 orbits of the attractor, and Poincare sections include 
100CL-10000 (typically 2500) intersections at each plane designated. The time delay was 
chosen to be the first minimum of the mutual information function (Fraser & Swinney 
1986). The minimum required embedding dimension mmin was estimated using the 
false-near-neighbour algorithm of M. B. Kennel, R. Brown & H. D. I. Arbabanel 
(1992, private communication) and was used to select the embedding dimension to 
calculate the Lyapunov exponent. 

Attractor dimension v was estimated using the Grassberger-Procaccia (1983) 
method, in which a correlation integral C(r) is used to measure how the number of 
points increase with r within a hypersphere of radius r on the reconstructed attractor. 
The correlation integral is expected to vary as C(r) - r”, where v is the ‘correlation 
dimension ’. Computing the derivative (using cubic splines) of log C(r) versus log r ,  v is 
taken to be the value of the derivative over a range of r where the derivative is (nearly) 
constant (i.e. within some deviation limit e, typically 10%). This range is called the 
‘scaling region’ and the ratio of distances corresponding to its endpoints is called the 
‘scaling factor’. If there is no range where the derivative is constant, it is said that there 
is a ‘lack of scaling’. The range of scales (over which the attractor has dimension v )  
proves to be valuable input for the choices of minimum and maximum limits rmin and 
rmaz for selecting neighbouring trajectories in the Wolf et al. (1985) algorithm to 
estimate the largest Lyapunov exponent A,. Correlation dimension calculations were 
carried out for embedding dimensions m = 1-10 and are reported for rn = mmin (as 
well as others for NPMP). In all cases, time series of length 2 lo5 were used (lo6 in the 
case of NPMP) comprising at least 2500 orbits of the attractors (since the sample 
frequency was 40 times the dominant frequency). 

The choice of rVZin and rmaz has a strong effect on the results of Wolfs algorithm; 
choosing neighbours whose separation is within the noise range will result in high 
estimates of A,, while choosing widely separated trajectories will yield low values. A 
number of tests using synthetic and laboratory data confirmed that the scaling range 
extracted from the correlation integral would yield correct values of A,. The A, 
estimates were confirmed using the Kruel-Eiswirth (1 992, private communication) 
algorithm for the Lyapunov spectrum. In the four main cases, the Kolmogorov 
entropy was estimated using the Grassberger-Procaccia (1983) method and was found 
to agree qualitatively with the Wolf method, in that periodic attractors had A, z 0 and 
chaotic attractors had a positive entropy slightly larger than the estimated A,. 

The analysis was performed on CTA voltages (measured by the a jd  converter) 
rather than velocity. There are several reasons to do this. One important observation 
is that the transformation from voltage to velocity fluctuations in CTAs is a 
diffeomorphism (thus preserving diffeomorphic invariants; see the equations in $A. 1). 
No information about the attractor is lost or altered; this was verified in several test 
cases for v,  A, and size of scaling range. Therefore, for U > 0 using common conditions 
of a CTA, analysis can be made with E instead of U. This is very important, because 
it allows other transformations to be made to E that will improve the signal-to-noise 
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FIGURE 15. Spatial development of spectral components (-,j; -----, s; -.-, q)  for (a) stable 
pairing at St, = 0.85, uf = 2.9%, Re, = 3.3 x lo4;  (6) stable double pairing at St, = 1.19, uf = 2.4 %, 
Re, = 2.3 x lo4; (c) quarter-harmonic chaotic attractor at St, = 1.19, uf = 1.06%, Re, = 2.3 x lo4. 
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ratio, specifically to subtract the mean and amplify the signal before transmission to 
the a/d converter; such a function E, = k,+ k ,  El is also diffeomorphic. Another 
advantage is that data handling and storage can be done with integer files rather than 
with larger, slower floating-point files. This is particularly useful when analysing 
numerous (hundreds!), voluminous data sets, as was the case here. One further 
advantage is that correlation dimension plots have as their abscissa the logarithm of 
phase-space distance, which corresponds directly to the number of bits of the a/d 
converter. Some related details can be found in Broze (1992). 

A.4. Streamwise development of spectral components 
The amplitude evolutions of the fundamental f, subharmonic s and quarter-harmonic 
q were measured along the jet centreline for 0 < .x/D < 6 for SP, SDP and QCA 
(figure 15). Near the exit, the signal consists of the velocity fluctuations from the 
imposed plane-wave forcing and the induced velocity from downstream vortices and 
their interactions. Often, the forcing dominates in this region, reflecting the fact that 
the probe, on the centreline, is rather far from the shear layer where rollup is occurring. 
However, since we have sought to capture the global dynamics of the jet, the centreline 
is the best measurement location; correspondingly, we have measured the streamwise 
growths there as well. 

For SP (figure 15 a), f initially decreases since the forcing amplitude decays faster 
than the perturbation induced by the rolled-up vortices grows. At x / D  = 0.3,fbegins 
to increase; its growth rate decreases near x / D  M 0.8 but shortly increases again, 
peaking at x / D  z 1.6. The slight bump at x / D  z 0.8 is the rollup location, but 
before any decay can occur f is augmented as the first harmonic of s, which has 
become nonlinear and has begun to saturate. The subharmonic grows exponentially 
from its feedback-induced amplitude of approximately 0.3 % and saturates near 
x / D  = 1.8-2.2. These rollup and pairing locations correspond to those found for SP by 
Bridges & Hussain (1992) using vorticity-based coherent structure eduction. The 
growth of q is quite weak, reaching approximately 10% of s by x / D  = 6. 

For SDP (figure 15b),fagain initially decays from its high initial value, reaching a 
brief plateau near x / D  z 0.4 before decaying. It rises again at x / D  M 1 as a harmonic 
of s, decays, and rises at x / D  M 3 again as a harmonic of q. The growth of s is the result 
of the fact that there are two pairing locations for SDP, one for the leapfrog motion 
of the leading pair (at x / D  M 1 from Bridges & Hussain) and the other for the trailing 
pair ( x / D  M I .7) ; this is quickly followed by the saturation of q, producing a harmonic 
at s. The combined effect is thus a wide saturation plateau for s. The quarter-harmonic 
grows monotonically and saturates at x / D  M 3. 

The evolution offfor QCA (figure 15c) again shows initial decay, but shows a clear 
peak at x / D  z 0.4. It decays, then rises as a harmonic of s, finally peaking at 
x / D  z 1.7. After that, it rises only gradually as q develops rather slowly. The sub- 
harmonic grows exponentially and saturates near x / D  M 1.8. The q amplitude grows 
slowly and does not peak until x / D  M 4, reflecting the fact that second pairings are not 
stabilized at a fixed location, but shift up and down the axis and often do not occur at 
all. 
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